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Abstract 

This study highlights ways in which generative activities may be coupled 
with network-based technologies in the context of teacher preparation to 
enhance preservice teachers’ cognizance of how their own experience as 
students provides a blueprint for the learning environments they may 
need to generate in their future classrooms. In this study, the design of 
generative learning environments is used as a framework for developing 
an activity for students to explore modeling by interpolation and function 
approximation in the classroom. The research question explored whether 
the implementation of a generative activity on function interpolation can 
lead to a qualitatively different mathematical space of solutions when 
used in a calculus class when compared to its use in the context of a class 
on learning theories in science, technology, engineering, and 
mathematics (STEM) education. Participating students included 
preservice STEM teachers and students in a first-year calculus course. In 
order to determine possible qualitative differences in mathematical 
activity between the two classroom contexts (calculus class or learning 
theories in STEM education class), the authors focused on the evidence 
of student individual and collective thinking from three different groups, 
as documented in their corresponding generated public spaces and 
explored and characterized each group by its respective generated 
mathematical spaces of solutions. 
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Technology forms a powerful tool of ever-increasing value in the arsenal of the 
contemporary educator. The rapid progress of technological innovation has transformed 
the mathematics classroom in numerous ways. One way in which this transformation has 
happened is in the development of tools such as network-based technologies, which allow 
for the recording and reviewing of conclusions reached through group dynamics. For this 
reason, preservice teachers, who themselves will don the garb of the instructor in due 
course, must take the time to familiarize themselves with the creative power unleashed by 
technologies that can facilitate the implementation of curricular activities focused on 
student understanding in order to inform their teaching. 

In many regards, preservice teachers find themselves in a unique position to experience 
the benefits of new technologies and activities imported to the classroom (Kersaint, 
2007). Teacher educators must ensure that the preservice teachers continually maintain 
an internal dialog concerning what they are learning and how the technology can be used 
to extend their experience of learning individually to one of participating in environments 
that also allow for group-level learning.  

Particularly, preservice teachers need exposure not only to new technologies for 
incorporation in their future classrooms, but also to the new possibilities of classroom 
interactions and reconceptualizations of mathematical content that the newly created 
learning environments will allow their future students. Generative activities (Stroup, 
Ares, & Hurford, 2005) provide a framework for constructing such mathematics learning 
environments that are also purposefully designed for groups (Stroup, Ares, Hurford, & 
Lesh, 2007). 

In this particular study, we present a case in which a generative activity about 
interpolation and function approximation is the key element for establishing an 
environment that allows the development of mathematical understanding in a group. The 
activity also serves to illustrate the role of network-based technologies in the interaction 
between learning and instruction and documentation of student learning. In generative 
activities, diversity of student individual participation generates a space of solutions that 
is both social and mathematical and that characterizes the learning that emerges from 
each group (as also in Stroup, Ares, & Hurford, 2005).  

As network-based technologies become more widely used in the classroom and 
researchers conduct studies to better understand the dynamics of student learning 
through activities designed for groups, teacher preparation programs must provide 
preservice teachers with these types of learning experiences that most likely did not form 
part of their previous academic history.   

This study presents three groups of students as they worked through a generative activity 
on interpolation in a calculus context. One group of students formed part of a first-year 
calculus course directed at majors in the social sciences, natural sciences, and 
engineering. The other two groups were comprised of preservice teachers taking one of 
the required science, technology, engineering and mathematics (STEM) education 
courses to get teacher certification as they simultaneously worked toward their degree 
program in one of the STEM areas.  

In each case, the students employed a network-based environment with graphing 
calculators, where their work was displayed anonymously on a screen for all to see. This 
display provided for an immediate and efficient way for students to share their 
understanding and allowed the instructor real-time assessment of student thinking to 
guide the classroom discussions.  
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We wanted to characterize the (personal and public) mathematical space of solutions of 
each class as a way to describe the mathematical activity of students. The purpose was to 
determine whether the context of a calculus class would lead to a qualitatively different 
mathematical space of solutions than the one generated by students who engaged in the 
same activity in the context of a class on learning theories in STEM education. This 
comparison would allow us to make inferences about the appropriateness of this 
generative activity as a blueprint for the mathematics learning environments preservice 
teachers may need to generate in their future classrooms and about the suitability of this 
activity in the context of a course on learning theories in STEM education. 

Background 

Framework 

In order to explore and characterize student learning from these groups, we took a 
hermeneutical stance to better understand the interplay between mathematical and social 
activity as they take place in the classroom (Skovsmose, 1998). In contrast to an absolute 
and externally defined notion of mathematics, this perspective views an individual’s 
experience of the world, actions, and language as a dynamic mathematical and social 
interaction.  

Brown (2002) stated that the system and structure of mathematics “can never be seen in 
its totality and is always accessed through specific action.” This interpretive perspective 
on the learning of mathematics requires that students put mathematical expression to 
their experience and have a way of assessing the appropriateness of the expression in 
particular situations through an “on-going fitting of language to mathematical activity” 
(Brown, 2002, p. 69). 

Using this framework, Brown described mathematical activity by highlighting the notion 
of personal space.  In a personal space individuals perceive themselves as acting and 
manipulating objects that are seen and handled from the world within reach. This space 
spreads beyond what is within a given individual’s immediate reach to the boundaries 
defined by the situation and the people with which the subject interacts: “The personal 
space of any individual also incorporates some concern about other people sharing the 
social situation and how these people contribute to the perceived constraints.” (p. 136)  

As individuals interact within a group situation, their personal spaces overlap and share 
certain characteristics. We use the term public space to refer to those aspects of an 
interactive situation shared by the personal spaces of participants. In this environment 
individuals can build awareness of their personal space for action through learning how 
the world and others change in response to them. 

Generative activities distinguish themselves from other group learning environments 
reported in the literature (e.g., Clark-Wilson, 2010; Rasmussen & Stephan, 2008) by the 
(personal and public) space-created play they generate. As described by Ares, Stroup, and 
Schademan (2009), space-created play arises when individual students are required to 
provide an expression with a particular mathematical characteristic (e.g., something 
equivalent to 4x) or to convey a strategy to attain a shared goal (e.g., prevent your agent 
from obtaining a “disease” in an environment interacting with other peer agents). The 
collection of students’ individual expressions generates a public space with an emergent 
mathematical (and social) structure co-constructed by the group. The public space 
created from students’ individual participation goes beyond the aggregate (e.g., showing 
students’ individual responses simultaneously), to generating a public space that is not 
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pre-determined. Rather, this public space is a new entity. It is emergent and co-
constructed by the group with its own mathematical structure that is distinct from the 
one in the individual students’ personal spaces. The mathematical space allows for 
multiple solutions, where student-generated contributions can be varied and yet all be 
mathematically valid.  

In the context of mathematical activity, individuals create mathematics in the physical 
and social situation they inhabit. The physical world, including physical tools and 
symbols, provides support in learning by anchoring cognitive processes, rather than 
fixing conceptions. In their study, Ares et al. (2009) described a generative activity with 
an elevator participatory simulation using a wireless network of graphing calculators that 
collected students’ individual input to their calculators, projecting their collective inputs 
on a screen at the front of the room and displaying the emergent system in real time. The 
authors viewed the worksheet tasks and calculators as artifacts that provided private 
space for students to investigate, test, and assess relationships in the mathematical 
content addressed by the task (velocity, position, motion graphs, etc.). 

In their personal space, students interact and are able to decide when and what aspects of 
their work they want to share in the public space. Thus, the public space helped students 
to “make their thinking visible” as the new collective system is generated (Ares et al., 
2009). The display of the emergent public space becomes a dynamic representation of the 
individual and collective activity as it evolves. Students’ mathematical statements made 
during the course of activity are seen as “snapshots along the way and serve to orientate 
thinking which continues to evolve” (Brown, 2002, p. 98).  

Classroom documentation of student understanding, individually and collectively, is 
important because it provides evidence of what and how they are thinking about relevant 
mathematical ideas.  This information can be used by the teacher to provide students 
with pertinent feedback and to make decisions about instructional practices. One of the 
most effective ways to improve how teachers teach is to help them become familiar with 
the nature of students' developing mathematical knowledge (Carpenter, Fennema, 
Franke, Levi & Empson, 1999; Black & Wiliam, 1998a, 1998b).  

Studies are needed that focus on better understanding the relationship between the 
emergent pedagogies from network-based environments and teacher education. One 
recent study provides findings that these technologies offer a natural progression toward 
a collaborative learning environment, which was perceived by teachers as productive for 
student learning because it continuously fostered formative assessment practices (Clark-
Wilson, 2010).  

Ares et al. (2009)  made constant reference to the fundamental role of their participating 
teacher in generating a productive learning environment for individual students and for 
the group. Teachers who engaged in teaching with these technologies were facilitated by 
the environment to capture student thinking, which was used to make instructional 
decisions, promoted meaningful mathematical classroom discourse, and increased 
opportunities for purposeful student self- and peer assessment (Clark-Wilson, 2010). 

In comparison with individual documentation, evidence of student thinking in the group 
space has been much less explored and researched because of the methodological and 
technological challenges (Rasmussen & Stephan, 2008). 

This study highlighted certain ways in which generative activities may be coupled with 
network-based technologies in the context of teacher preparation to enhance preservice 
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teachers’ cognizance of how their own experience as students provides a blueprint for the 
learning environments they may need to generate in their future classroom. This study 
focused on a limited portion of the personal space—personal space the students chose to 
share in the public space. The study focused on the evidence of student individual and 
collective thinking as documented in the generated public space and explored and 
characterized the generated mathematical space of solutions.  

Activity 

The present study focused on functional interpolation of points in the context of calculus. 
The literature already provides numerous examples of how other concepts have been 
studied, such as functions (Eisenberg, 1991; Janvier, 1987; Kieran, 1997; Malik, 1980; 
Thompson, 1994; Wagner, 1981), limits and continuity (Davis & Vinner, 1986; Ferrini-
Mundy & Graham, 1994; Juter, 2006; Millspaugh, 2006; Núñez, Edwards, & Matos, 
1999; Sierpinska, 1987; Tall & Vinner, 1981), derivative (Asiala, Cottrill, Dubinsky, & 
Schwingendorf, 1997; Aspinwall, Shaw, & Presmeg, 1997; Habre & Abboud, 2006; Ubuz, 
2007), and integral (Orton, 1983; Rasslan & Tall, 2002; Thompson & Silverman, 2008). 

However, function interpolation provides an example of an important topic that has 
received relatively short shrift. Its importance stems in part from how it bridges the gap 
between the classical continuum analysis of calculus and the discrete world of data points 
encountered in computer technology, in particular, in numerical analysis. Precisely 
because of its position at the intersection of classical theory and technological 
applications, interpolation provides a unique opportunity for studying how students 
interact with technology and the impact of this interaction on learning.  

This approach fits with research encountered in previous studies, such as Cantoral and 
Montiel (2003), who designed an activity intended to improve student understanding of 
Lagrange interpolation polynomials through a gradual sequence of problems. Although 
the activity considers the use of handheld graphing calculators, they provided no mention 
of any attempt to promote opportunities where the students could learn collectively with 
a shared public space that promotes eliciting and documenting student thinking. 

The activity employed in the present study can be characterized by a generative design 
(Stroup, Ares, & Hurford, 2005; Stroup, Ares, Hurford, & Lesh, 2007). As described 
elsewhere in this paper, a critical element in these types of activities is a context in which 
participation of all students is encouraged and each student’s contribution receives a 
visual representation in the public space. The teacher should foster a continual dialog 
between students, facilitating individual participation and relating it both to the 
contributions of others and to the emergent mathematical structure.  

More specifically, the present study concentrates on a modeling task that should be 
meaningful, shareable, and reusable and should elicit students’ mathematical thinking in 
some visible way. 

In many respects, network-based technologies are ideal tools for supporting generative 
learning environments, embodying personal and public spaces by allowing for individual 
participation (through the use of handheld graphing calculators or laptops networked to 
the teacher’s computer acting as a server) that is represented publicly (a projection of the 
teacher’s computer screen). Student participation is made visible and documented in the 
public space at the individual and group levels, which serves as a point of reference for 
students to discuss, refine, and revise their ideas continuously.  



Contemporary Issues in Technology and Teacher Education, 11(4) 

367 
 

This particular activity employed the graphing calculators as participatory tools. In this 
system, information finds its way from students’ devices to the teacher’s computer and 
vice versa. Students can, therefore, submit and view their individual responses in the 
public space displayed from the teacher’s screen, and the teacher can send contributions 
from the public space to individual students’ devices. 

The research question driving our study was as follows: Does the implementation of a 
generative activity on function interpolation lead to a qualitatively different mathematical 
space of solutions when used in a calculus class as compared to its use in the context of a 
class on learning theories in STEM education? 

This comparison allowed us to make inferences about the appropriateness of this 
generative activity as a blueprint for the learning environments preservice teachers may 
need to generate in their future classrooms and about the suitability of the use of this 
activity in the context of a course on learning theories in STEM education that is part of 
the teacher preparation program. For example, the preservice teachers may have 
generated a less productive mathematical space than the group taking the calculus class. 
This result could call into question the appropriateness of the use of this generative 
activity for assisting in the development of learning environments in K-12 classrooms and 
the pertinence of introducing these types of environments within the context of a course 
on learning theories in STEM education. In order to analyze possible differences, we 
characterized the personal and public mathematical space of solutions of each class as a 
way to describe the mathematical activity of students. 

Methods 

This research was conducted in three classrooms at a large public university in the 
southern U. S. One group was derived from a first-semester calculus course for students 
majoring in the social sciences, natural sciences, or engineering; the remaining two 
groups consisted of preservice teachers taking one of the courses on learning theories in 
STEM education that is required in their teacher preparation program. For the purposes 
of description, we will refer to the general-major, first-year students as Group 1 and to the 
preservice teachers as Groups 2 and 3. 

Group 1 was formed by 79 students who volunteered to participate in this study, out of 
110 enrolled in the class. The curriculum for this course covers the first eight chapters of 
the textbook Calculus (Stewart, 2003), a standard textbook used in first-year calculus 
courses in numerous universities throughout the country. 

Groups 2 and 3 were comprised, respectively, of 6 students (out of 10 enrolled) and 8 
students (out of 20 enrolled) who chose to participate in this study. Students enrolled in 
this teacher preparation program major in one of the STEM areas and are required to 
take additional courses in the education department specifically designed to prepare 
students in STEM education in order to obtain certification as secondary school teachers. 
In particular, their participation in this study took place while they were taking a required 
course in learning theories in STEM education. Their coursework not only provided these 
preservice teachers with a strong background in STEM content, but also in the integration 
of content and pedagogy within STEM. 

The activity utilized the Texas Instruments Navigator System (TI-Nav), which provides a 
wireless network of graphing calculators (TI-84+) connected to the teacher’s computer. 
The teacher’s computer acted as a server, projecting a display of the public space in which 
students’ contributions were displayed. Given the limited number of calculators that can 
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be supported in this network, a maximum of 32 calculators was used in Group 1, and six 
and eight calculators, respectively, were used for Groups 2 and 3. Students in Group 1 
were asked to work in pairs to promote discussion and increase participation. A total of 
64 students responded via the available TI-84+ calculators connected to the network. The 
remaining 15 students in the class worked with similar graphing calculators and were 
asked to register their responses on an activity sheet. This was the first time students 
from the three groups used the TI-Nav and the particular activity center available for this 
environment. 

The classroom episode was divided into two major sections to be performed in the span of 
one 50-minute class period. The first section was an activity designed by Stroup (Stroup 
& Davis, 2004; Stroup, Carmona, & Davis, 2005). It allowed students to accustom 
themselves to the instructional environment provided by the technology. The second 
section focused on the intended interpolation activity itself: 

1. Activity 1: Playing with the system. In order to familiarize students with the use of 
the TI-84+ and the TI-Nav system, students were asked to contribute with two 
points per calculator.  Each student was represented by a different icon (or agent) 
on a Cartesian plane, which formed the public space displayed by the teacher’s 
computer.  Students had three connected challenges which were addressed in the 
following order:  

a. Go to a place on the plane where x is negative and y is positive;  
b.  Mark two points where the value of y is twice the value of x;  
c.  Write an equation of a curve going though all the points contributed by 

the students.   
2. Activity 2: The Egg Hunter Activity.  In this activity, students were asked to 

contribute to the public space to model a real quail egg, with its 2-dimensional 
cross-section projected on the screen.  This module strove to elicit from students 
ideas about interpolation, continuity, and the analysis of functions.  Student 
contributions followed in two stages:   

a. Data Generation: Students were asked to place a single point that 
accurately marked the outer boundary of the top half of the egg.  

b.  Modeling: After all the students submitted their points, the instructor 
transmitted the points to students’ calculators.  Students were then asked 
individually to find a function that best fit (i.e., contained or touched) all 
of the points.  Once students submitted their functions, discussion 
focused on which of the submissions best fit the projected contour of the 
egg.   

To find the volume of the quail’s egg within single-variable calculus, the students would 
eventually employ the technique of analyzing a solid of revolution.  By this technique, the 
solid is formed by revolving a single-variable curve f(x) about the x-axis.  The volume is 
then found by noting that the cross-section perpendicular to the x-axis forms a circular 
disk whose radius at position x0 is the function value f(x0).  The area of this circular disk, 
as a function of x0, is therefore 

 

and so the total volume of the solid could be obtained by integrating this area along the x-
axis: 
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To accomplish this ultimate goal, the necessary first step was to find the height f(x) of the 
outer boundary of the egg as a function of x.   

Students in Group 1, who were in only their first semester of calculus, had already been 
exposed to the necessary techniques of integration, but they had not previously discussed 
interpolation in class.  Students in Groups 2 and 3 were already required to have 
completed a minimum of 1 year of their STEM major before enrolling in the teacher 
certification program.  They were expected to devise their own solutions based on the 
concepts of functions and continuity with which they were already familiar. 

The entire session was recorded on video, with the camera focusing on the projected 
public space. The data collected for this study consisted of student activity sheets, video, 
and field notes written by the research team. One of the authors conducted the activity 
while another made observations and remained available to assist students with the 
technology.  

The analysis focused on characterizing the classroom by the documentation provided in 
the public space over class time. We conducted a discourse analysis to characterize the 
social and mathematical structures that emerged from the classroom interactions. Data 
analysis involved reviewing the videotape multiple times. First, an outline was generated 
providing a timeline of mathematical activities during the two tasks. Initially, a first 
overview was described in terms of the instructor’s and students’ roles and identifying 
different types of interactions: of the instructor with students, with the public space, and 
with the mathematical ideas emerging over time.  

Second, each mathematical expression submitted by students to the public space was 
recorded, providing the time of submission. From this chronological list we characterized 
the mathematical structure of the dynamic public space by identifying instances where 
students or the instructors focused on particular characteristics of the emergent 
mathematical structure. These instances were identified whether of a single expression 
submitted by an individual student or from a collection of expressions that generated it. 
Several screen shots from the public space were captured through the recorded video in 
order to document particular instances of the evolving public space. 

Results 

Figure 1 shows a representative image of the points contributed by students to delineate 
the border of the egg. Figure 2 shows the functions, along with their graphs, that were 
shared in the public space by students from Group 1. Proposed functions can be 
characterized in several ways. The characterization emphasized by this class involved the 
degree of the equation. For example, the most frequent type of equations populating the 
public space involved quadratics (e.g., Y1 = .05 (X^2) + 7.5; Y1 =  -1/25 (X^2) + 7.28) and 
radicals (Y1 = [-.43(X^2) + 50]^0.5). Other submissions included trigonometric 
equations (e.g., Y1 = sin (X) – 10), and a variety of equations demonstrating other 
mathematical aesthetics; for example, Y1 = X((e^(49)/2) + 7) [sic]. 



Contemporary Issues in Technology and Teacher Education, 11(4) 

370 
 

 

Figure 1. An example of points submitted by students to delineate the upper boundary 
of the egg. 

 
The public space was populated in batches in relatively little time. The first batch of 
submissions lasted about 3 minutes before the instructor paused to discuss the emergent 
mathematical structure that had been generated thus far as documented in the public 
space. The sequence of students’ equations revealed the dynamic interaction between the 
personal and public spaces and elicited the mathematical structures that students deem 
to be better in the context of the activity (e.g., better fit to the curvature of the egg). For 
example, during the initial 50 seconds, 5 students submitted different equations (each 
student is provided with a different username—e.g., FFF): 
 

FFF:  

JJJ: 

ZZZ: 

WWW: 

MMM:  

Y1 = -.05 (X^2) + 7 

Y1 = -.05 (X^2) + .1X + 7.5 

Y1 = sqrt (-8X - 8) 

Y1 = (-(x^2)/16.5) + 7.2 

Y1 = -1/25(x^2) + 7.28 

This public space continued to populate rapidly. Although all equations were different, 
many of the subsequent submissions seemed to follow a pattern from a reinterpretation 
of some of these initial equations producing a refined version from the previous ones. The 
collection of these refinements was produced by individual students testing their 
equations in their personal space.  
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For some students, the mathematical activity focused on refinement of a mathematical 
equation previously submitted that was considered a good fit but that could still be 
improved. Sometimes the source equation had been submitted by another peer; on other 
occasions, students submitted second and third equations that were refinements of their 
previous work. As an example of the former, student FFF submitted equation Y1 = -.05 
(X^2) + 7 to the public space at time 36:43, then, student HHH submitted Y1 = -.05 
(X^2) + 0.1x  + 7.5 to the public space at time 37:42 as a refinement of student FFF’s first 
submission.  Later, at time 38:10, student RRR did further refined student HHH’s 
submission by sharing his equation, -.05 (X^2) + 0.1x + 7 in the public space.  

The following case illustrates the latter example. At time 38:39, student PPP shared Y1=-
.05 (X^2) + 7.5 in the public space, a refinement of student FFF’s first equation. She then 
refined her first submission and shared her second refinement Y1=-.05 (X^2) + 7.6 at 
time 39:23. Each of these instances exemplify different types of interaction between 
students’ personal and public spaces. When shared, the collection of these equations 
generated an emergent mathematical structure that characterized the public space at that 
point in time.  

When captured at different times, these screen shots provided trails of documentation of 
the dynamic public space and the evolving mathematical ideas. Students were able to 
validate their responses, first in their personal space, then in the public space by assessing 
how well their new equations fit the contour of the egg.  

The teacher facilitated the subsequent discussions by asking students which of the 
submitted equations better met the criteria of best fit to the contour of the egg and 
explicitly encouraging students to provide comments and suggestions for improving the 
work of others. The students of Group 1 focused on a more refined collection of functions 
that they decided best fit the points. One cluster of these functions took the general 
shape: 

.  

When prompted by the teacher, students voiced their opinions, supporting their choice 
for which of the following pairs of parameters (a,b) worked best: (49,-0.45), (50,-0.45), 
(49,-0.49). Student justification mainly relied on how the curves fit the contour of the 
egg. The teacher also identified other clusters of students’ equations, which she 
characterized to the class as quadratics: binomials and trinomials and smaller clusters on 
trigonometric functions. 

The preservice teachers of Groups 2 and 3 showed a greater range of functional forms 
despite the fact that the groups consisted of far fewer students. A video screenshot of the 
generated public space is provided in Figure 3. The greater variety in large part followed 
from a tendency to use function composition. One striking point of departure from the 
results obtained with Group 1 was the use in Groups 2 and 3 of piecewise-defined 
functions.  
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Figure 2. Students’ attempts at finding a function passing through all the points on 
the egg's boundary.  Group 1. 

 

 

 

(a) Group 2 (b) Group 3 
Figure 3. Student attempts at finding a function passing through all the points on the 
egg's boundary. 

As can be seen in the screenshot presented in Figure 4, as the teacher focused the 
discussion, these functions generally took the form: 
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In these types of functions, students split the domain at the point x = 0, which they 
identified as a “point where the shape of the curvature of the egg changed.” For example, 
Figure 4(a) represents the piecewise-defined function: 

 

while Figure 4(b) represents: 

 

  

(a) Graph of G(x). (b) Graph of H(x). 

Figure 4. Graphs of fits via piecewise-defined functions.  Group 2. 

  

As with Group 1, the fits encountered by Group 2 contained sections with the form 

 ,  

but the piecewise definitions allowed for some departure from this form over that portion 
of the domain where students decided there was less agreement on where the egg 
curvature changed. Similarly, the screenshot in Figure 5 depicts two fits proposed by 
Group 3, which bear a marked structural resemblance to the results of Group 2, via the 
functions: 

 

and          
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(a) Graph of G(x). (b) Graph of H(x). 

Figure 5. Graphs of fits via piecewise-defined functions.  Group 3. 

  

Discussion 

This study focused on the implementation of a generative activity on function 
interpolation and analyzed qualitative differences in the mathematical spaces of solutions 
generated by three groups of students. We explored and characterized each group by their 
respective generated mathematical space of solutions in order to assess the suitability of 
the implementation of this learning environment for learning about mathematics and 
pedagogy in mathematics in the context of a course on learning theories in STEM 
education and the appropriateness of using this generative design in their future learning 
environments.   

The following discussion focuses on the characterizations of these groups in three 
identified topics that emerged from our analysis: interactions between a student’s 
personal and public spaces, characterizations of the groups based on the public space they 
generated, and technology and documentation of the emergent mathematical ideas.  

Personal Space Shared Publicly 

Several researchers have reported classroom environments where students were 
constrained to use the language of others because the constructive use of discourse was 
undermined (e.g., Filer, 1993; Newmann, 1992). In generative activities, students are not 
constrained to use the language of others, yet our results show that others’ language can 
become one common resource that students use. In this context, the practice became 
cognitively and socially productive. As presented in our results with this generative 
activity, even when students used the language of others, their discourse provided 
instances of productive mathematical and social learning interactions.  

In instances when some students used the language of others by varying an equation 
shared into the public space by another peer, it is hard to justify that this recreation of 
another’s expression was cognitively weak or that was caused by lack of interest. Even in 
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such putative cases, we have evidence that when students used an equation previously 
submitted in the public space, their decision followed from their assessment that their 
peer’s expression involved a curve that was good but could be improved, highlighting this 
expression as an interesting direction to pursue. Evidence of instances when students 
engaged in this type of activity was provided when they used the equations presented in 
the public space and changed specific parameters to generate new curves that fit the data 
better than the previous submissions.  

This adaptation involved making a decision regarding which equation to choose, what 
parts of the equation needed amendment, and which ones should remain intact required 
from the student an understanding of the mathematical structure of the previously 
submitted expression and its relationship with the graph representing it. It also required 
students to predict how modifying the selected parameters would create the new graph 
that would be a better fit. Beyond communication, this exercise entailed identifying a 
mathematically productive idea, operating on someone else’s knowledge, and thus, 
understanding someone else’s knowledge in order to create and recreate equations that 
make visible these highly complex mathematical and social activities. 

The instructor also played a central role in making students’ participation more 
productive mathematically. When the teacher elicited students’ continual participation, 
the structure of the activity allowed them to build on the group’s ideas. That is, when the 
instructor required students to provide comments and suggestions for improving the 
work of others, students demonstrated they are able visually to identify other peers’ 
responses and interpret their graph and corresponding equation.  

In order to create these refinements by providing a new equation, students showed 
understanding of how the values from the equation could be improved, as was validated 
when their  graph fit the data points better than the preceding equation. The cognitive 
complexity of this task required students to make connections between both types of 
representations (graphs and algebraic equations) and be able to anticipate how changes 
in the expression would modify the graph to better fit the curvature of the egg. In 
addition, students were able to make sense of their own responses in relation to the 
responses of other students, allowing a better understanding of the mathematical ideas 
embedded in the generated public space. Their expression has mathematical value with 
respect to the expression of another and of the group. 

Characterization of the Group in the Public Space 

Within Group 1, it was clear that students valued the idea of arriving at a function 
determined by a single equation over the accuracy of a curve that coincided with all the 
points of the boundary of the egg. Conversations with students during the activity 
confirmed this perception. Given that the students were taking a course on calculus, they 
felt compelled to address immediately the mathematical property of continuity of a 
function: their knowledge of the Fundamental Theorem of Calculus suggested to them 
that to help ensure that the function could be integrated it should also be continuous. 
These students believed that the best way to ensure the continuity of a function would be 
to identify a single expression for the entire domain. 

The space generated by Groups 2 and 3 centered more on accuracy: the preservice 
teachers did not see a disconnect between meeting the condition of continuity and 
providing piecewise-defined functions that would allow a better fit over the whole 
domain. In addition, students from both preservice teacher groups expressed a holistic 
perspective on curvature, viewing part of their task as trying to fit accurately the overall 



Contemporary Issues in Technology and Teacher Education, 11(4) 

376 
 

boundary of the egg. In contrast, the first-semester calculus students in Group 1 viewed 
curves they submitted as best fits because “they go through all the points.” 

Technology and Documentation of Emergent Mathematical Ideas 

The graphing calculators admit an ease of graphing heretofore difficult to come by. They 
allow students to redraw an entire curve by changing a single parameter, thereby 
facilitating opportunities to iteratively revise and refine multiple attempts in the same 
time span in which a student would have drawn one attempt by hand a couple decades 
ago. Moreover, coupled with the network of calculators and computers, the cross-
pollination of ideas proceeds at a rapid pace, turning learning truly into a process that is 
social and mathematical at the same time. 

Wallace (2004) pointed out that educators  know more about how to incorporate 
technology into the curriculum, in general, and about software that affects student 
learning than about the teacher’s role in using technology for achieving student 
understanding, in particular, regarding subject matter. In this study, we were able to see 
how technology facilitates the use of public space to gain a window into individual 
student thinking in a dynamic way. In particular, by following how each student’s 
contributions in relation to the preceding responses of the rest of the participants and 
contrasting with others’ submissions, the teacher can decide whether the proposed 
change is merely a minor modification of what came before or something altogether 
qualitatively different.  

Both of these approaches give the teachers different resources to use in follow-up 
discussions or to address through instruction based on students’ previous understanding. 
For example, by looking at the public space as it was being populated by students’ 
submission of equations, the teacher was able to characterize, practically in real time, 
different clusters.  

By identifying particular equations, the teacher highlighted these expressions and 
generated a class discussion to validate their accuracy, for example, those of the type of 
equations with parameters (a,b): (49,-0.45), (50,-0.45), (49,-0.49): 

  

Students’ justifications allowed the teacher to assess student understanding of the 
(identified) mathematical structure of the submitted equations. 

Though students provided a broad variety of approaches to find a curve of best fit, none of 
the students utilized Lagrange’s interpolation to generate their equations. Yet, they used 
mathematical ideas of continuity and precision, and some students negotiated the 
tensions they perceived between the two. Without engaging in a discussion on the 
appropriateness of the following pedagogical approaches, continuity is often heuristically 
introduced to students by saying “when you draw the curve, you can’t lift your pencil from 
the paper.” This is important. It has nothing to do with the question of whether a function 
can be written down in one single expression or several. Surely the following function is 
continuous despite the fact that it requires several mathematical expressions to describe 
it: 
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By contrast, differentiability is heuristically characterized by drawing a smooth curve, or 
a curve with no kinks. The teacher’s assessment of student thinking throughout the 
course helped her realize that, as a rule of thumb, students often pick up on the fact that 
the functions described by a single equation generally have a smooth graph, at least in 
most textbook examples. Thus, where students sought a solution in terms of an easily 
expressible function, they seemed to be conflating differentiability with continuity.  

Conclusion 

This paper has provided an example of a generative activity using network-based 
technology to provide a dynamic public space that captures student-to-student 
interaction and is guided by an instructor. The particular technology in place provided a 
system by which students could explore their own ideas in mathematical form in order to 
solve a problem in a personal space, while at the same time receiving ideas and feedback 
from their peers through a public space. For the teacher, the records created by the 
technology provided a tool to investigate how a particular student’s public space evolved 
over the course of the activity and, therefore, provided the teacher with a new avenue to 
reconstruct student’s dynamic understanding of the concepts discussed: emergent public 
and personal spaces.  

While the three groups made similar use of these social interactions in the development 
of knowledge when participating in the given generative activity on function 
interpolation, our results provide evidence of different mathematical spaces generated by 
the three groups. There were some similarities in the characterization of the equations 
submitted by the three groups, as they all used quadratics, as well as equations of the 
form  

.  

However, Groups 2 and 3 generated mathematical spaces with similar structure as they 
used piecewise-defined functions; whereas Group 1 did not use piecewise-defined 
functions, but did make use of trigonometric functions in their public space.  

The preservice teachers in Groups 2 and 3 generated a qualitatively different 
mathematical space than the nonpreservice teachers in Group 1. Yet, the three groups 
evidenced rich mathematical structures that were productive in the learning of function 
interpolation. The goal of integrating this function elicited students’ ideas of accuracy and 
continuity that were differently addressed by the groups.  

In addition, students’ participation in this activity provided an experience of a 
transformation of the learning environment and a reconceptualization of the 
mathematical content that emerged.  

In particular, this activity “provided opportunities for preservice teachers to themselves 
learn in and reflect upon facilitating effective learning” (Shamatha, Peressini, & 
Meymaris, 2004, p. 375). This experience can become an opportunity to experience 
innovative ways of teaching and learning mathematics in their preparation as future 
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teachers if incorporation of new technologies is to be seen as a catalyst for generating new 
classroom interactions that allow for reconceptualizations of mathematical content and 
social spaces. As Brown (2002, p. 153) described, “It is only by acting in the world and 
thus changing the world that we learn how to act in the world.” 
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